Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 319: 115488, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35982549

RESUMO

CONTEXT: Ecological Risk Assessments (ERAs) are important tools for supporting evidence-based decision making. However, most ERA frameworks rarely consider complex ecological feedbacks, which limit their capacity to evaluate risks at community and ecosystem levels of organisation. METHOD: We used qualitative mathematical modelling to add additional perspectives to previously conducted ERAs for the rehabilitation of the Ranger uranium mine (Northern Territory, Australia) and support an assessment of the cumulative risks from the mine site. Using expert elicitation workshops, separate qualitative models and scenarios were developed for aquatic and terrestrial systems. The models developed in the workshops were used to construct Bayes Nets that predicted whole-of-ecosystem outcomes after components were perturbed. RESULTS: The terrestrial model considered the effect of fire and weeds on established native vegetation that will be important for the successful rehabilitation of Ranger. It predicted that a combined intervention that suppresses both weeds and fire intensity gave similar response predictions as for weed control alone, except for lower levels of certainty to tall grasses and fire intensity in models with immature trees or tall grasses. However, this had ambiguous predictions for short grasses and forbs, and tall grasses in models representing mature vegetation. The aquatic model considered the effects of magnesium (Mg), a key solute in current and predicted mine runoff and groundwater egress, which is known to adversely affect many aquatic species. The aquatic models provided support that attached algae and phytoplankton assemblages are the key trophic base for food webs. It predicted that shifts in phytoplankton abundance arising from increase in Mg to receiving waters, may result in cascading effects through the food-chain. CONCLUSION: The qualitative modelling approach was flexible and capable of modelling both gradual (i.e. decadal) processes in the mine-site restoration and the comparatively more rapid (seasonal) processes of the aquatic ecosystem. The modelling also provides a useful decision tool for identifying important ecosystem sub-systems for further research efforts.


Assuntos
Ecossistema , Urânio , Teorema de Bayes , Cadeia Alimentar , Medição de Risco , Urânio/análise
2.
Environ Pollut ; 284: 117318, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34052601

RESUMO

Bacteria and archaea (prokaryotes) are vital components for maintaining healthy function of groundwater ecosystems. The prokaryotic community composition and associated putative functional processes were examined in a shallow sandy aquifer in a wet-dry tropical environment. The aquifer had a contaminated gradient of saline mine-water, which primarily consisted of elevated magnesium (Mg2+) and sulfate (SO42-), although other major ions and trace metals were also present. Groundwaters were sampled from piezometers, approximately 2 m in depth, located in the creek channel upstream and downstream of the mine-water influence. Sampling occurred during the dry-season when only subsurface water flow was present. Next generation sequencing was used to analyse the prokaryote assemblages using 16S rDNA and metabolic functions were predicted with FAPROTAX. Significant changes in community composition and functional processes were observed with exposure to mine-waters. Communities in the exposed sites had significantly lower relative abundance of methanotrophs such as Methylococcaceae and methanogens (Methanobacteriaceae), but higher abundance in Nitrososphaeraceae, associated with nitrification, indicating potentially important changes in the biogeochemistry of the exposed sites. The changes were most strongly correlated with concentrations of SO42-, Mg2+ and Na+. This knowledge allows an assessment of the risk of mine-water contamination to groundwater ecosystem function and aids mine-water management.


Assuntos
Ecossistema , Água Subterrânea , Archaea/genética , Bactérias/genética , Água
3.
Environ Toxicol Chem ; 40(8): 2334-2346, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33928674

RESUMO

Six tropical freshwater species were used to assess the toxicity of mine waters from a uranium mine adjacent to a World Heritage area in northern Australia. Key contaminants of potential concern for the mine were U, Mg, Mn, and total ammonia nitrogen (TAN). Direct toxicity assessments were carried out to assess whether the established site-specific guideline values for individual contaminants would be protective with the contaminants occurring as mixtures. Metal speciation was calculated for contaminants to determine which were the major contributors of toxicity, with 84 to 96% of Mg predicted in the free-ion form as Mg2+ , and 76 to 92% of Mn predicted as Mn2+ . Uranium, Al, and Cu were predicted to be strongly bound to fulvic acid. Uranium, Mg, Mn, and Cu were incorporated into concentration addition or independent action mixture toxicity models to compare the observed toxicity in each of the waters with predicted toxicity. For >90% of the data, mine-water toxicity was less than predicted by the concentration addition model. Instances where toxicity was greater than predicted were accompanied by exceedances of individual metal guideline values in all but one case (i.e., a Mg concentration within 10% of the guideline value). This indicates that existing individual water quality guideline values for U, Mg, Mn, and TAN would adequately protect ecosystems downstream of the mine. Environ Toxicol Chem 2021;40:2334-2346. © 2021 Commonwealth of Australia. Environmental Toxicology and Chemistry © 2021 SETAC.


Assuntos
Urânio , Poluentes Químicos da Água , Amônia , Ecossistema , Água Doce , Urânio/análise , Urânio/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Qualidade da Água
4.
Integr Environ Assess Manag ; 15(5): 683-702, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31260182

RESUMO

Existing prescriptive guidance on the derivation of local water quality benchmarks (WQBs; e.g., guideline values, criteria, standards) for protecting aquatic ecosystems is limited to only 3 to 4 specific approaches. These approaches do not represent the full suite available for deriving local WQBs for multiple types of water quality-related issues. The general lack of guidance is inconsistent with the need for, and benefits of, local WQBs, and can constrain the appropriate selection and subsequent evaluation of derivation approaches. Consequently, the defensibility of local WQBs may not be commensurate with the nature of the issues for which they are derived. Moreover, where local WQBs are incorporated into regulatory requirements, the lack of guidance presents a potential risk to the derivation of appropriate WQBs and the achievement of desired environmental outcomes. This review addresses the deficiency in guidance by 1) defining local WQBs and outlining initial considerations for deciding if one is required; 2) summarizing the existing regulatory context; 3) summarizing existing guidance and identifying gaps; 4) describing strengths, weaknesses, and potential applications of a range of derivation approaches based on laboratory and/or field data; and 5) presenting a conceptual framework for appropriately selecting and evaluating a derivation approach to best suit the need. The guidance incorporates an existing set of guiding principles for deriving local WQBs and reinforces an existing categorization of site-adapted and site-specific WQBs. The conceptual framework recognizes the need to strike an appropriate balance between effort and ecological risk and, thus, embeds the concept of fit-for-purpose by considering both the significance of the issue being assessed and the extent to which the approach provides confidence that the ecosystem will be appropriately protected. The guidance can be used by industry, regulators, and others for both the a priori selection and the post hoc evaluation of appropriate approaches for deriving local WQBs. Integr Environ Assess Manag 2019;15:683-702. © 2019 The Authors.


Assuntos
Benchmarking/métodos , Poluentes Químicos da Água/análise , Qualidade da Água/normas , Benchmarking/normas
5.
Environ Toxicol Chem ; 29(2): 410-421, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20821461

RESUMO

The toxicity of magnesium sulfate (MgSO(4)), and the influence of calcium (Ca), were assessed in very soft freshwater (natural Magela Creek water [NMCW]) using six freshwater species (Chlorella sp., Lemna aequinoctialis, Amerianna cumingi, Moinodaphnia macleayi, Hydra viridissima, and Mogurnda mogurnda). The study involved five stages: toxicity of MgSO(4) in NMCW, determination of the toxic ion, influence of Ca on Mg toxicity, toxicity of MgSO(4) at an Mg:Ca mass ratio of 9:1, and derivation of water quality guideline values for Mg. The toxicity of MgSO(4) was higher than previously reported, with chronic median inhibition concentration (IC50)/acute median lethal concentration (LC50) values ranging from 4 to 1,215 mg/L, as Mg. Experiments exposing the 3 most sensitive species (L. aequinoctialis, H. viridissima, and A. cumingi) to Na(2)SO(4) and MgCl(2) confirmed that Mg was the toxic ion. Additionally, Ca was shown to have an ameliorative effect on Mg toxicity. For L. aequinoctialis and H. viridissima, Mg toxicity at the IC50 concentration was eliminated at Mg:Ca (mass) ratios of < or =10:1 and < or =9:1, respectively. For A. cumingi, a 10 to 30% effect persisted at the IC50 concentration at Mg:Ca ratios <9:1. The toxicity of MgSO(4) in NMCW at a constant Mg:Ca ratio of 9:1 was lower than at background Ca, with chronic IC50/acute LC50 values from 96 to 4,054 mg/L, as Mg. Water quality guideline values for Mg (to protect 99% of species) at Mg:Ca mass ratios of >9:1 and < or =9:1 were 0.8 and 2.5 mg/L, respectively. Magnesium can be toxic at concentrations approaching natural background levels, but toxicity is dependent on Ca concentrations, with exposure in very low ionic concentration, Ca-deficient waters posing the greatest risk to aquatic life.


Assuntos
Cálcio/farmacologia , Sulfato de Magnésio/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Chlorella/efeitos dos fármacos , Cladocera/efeitos dos fármacos , Água Doce/análise , Hydra/efeitos dos fármacos , Controle de Qualidade , Caramujos/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA